Interval-regular graphs of diameter two
نویسندگان
چکیده
منابع مشابه
Regular vertex diameter critical graphs
A graph is called vertex diameter critical if its diameter increases when any vertex is removed. Regular vertex diameter critical graphs of every valency k ≥ 2 and diameter d ≥ 2 exist, raising the question of identifying the smallest such graphs. We describe an infinite family of k-regular vertex diameter critical graphs of diameter d with at most kd+ (2k − 3) vertices. This improves the previ...
متن کاملDiameter Two Graphs of Minimum Order with Given Degree Set
The degree set of a graph is the set of its degrees. Kapoor et al. [Degree sets for graphs, Fund. Math. 95 (1977) 189-194] proved that for every set of positive integers, there exists a graph of diameter at most two and radius one with that degree set. Furthermore, the minimum order of such a graph is determined. A graph is 2-self- centered if its radius and diameter are two. In this paper for ...
متن کاملSuperconnectivity of regular graphs with small diameter
A graph is superconnected, for short super-κ, if all minimum vertex-cuts consist of the vertices adjacent with one vertex. In this paper we prove for any r-regular graph of diameter D and odd girth g that if D ≤ g − 2, then the graph is super-κ when g ≥ 5 and a complete graph otherwise.
متن کاملTaut Distance-Regular Graphs of Odd Diameter
Let denote a bipartite distance-regular graph with diameter D ≥ 4, valency k ≥ 3, and distinct eigenvalues θ0 > θ1 > · · · > θD . Let M denote the Bose-Mesner algebra of . For 0 ≤ i ≤ D, let Ei denote the primitive idempotent of M associated with θi . We refer to E0 and ED as the trivial idempotents of M . Let E, F denote primitive idempotents of M . We say the pair E, F is taut whenever (i) E,...
متن کاملThe diameter of random regular graphs
We give asymptotic upper and lower bounds for the diameter of almost every r-regular graph on n vertices (n~). Though random graphs of various types have been investigated extensively over the last twenty years, random regular graphs have hardly been studied. The reason for this is that until recently there was no formula for the asymptotic number of labelled r-regular graphs of order n. Such a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Discrete Mathematics
سال: 1984
ISSN: 0012-365X
DOI: 10.1016/0012-365x(84)90042-6